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Nonlinear Development of Gdrtler and Crossflow Vortices and

Gortler/Tollmien-Schlichting Wave Interaction

ABSTRACT

The problem of nonlinear development of Gortler vortices on a curved

wall is studied within the framework of incompressible Navier-Stokes

equations which are solved by a Fourier-Chebyshev spectral method. The

results show that higher harmonics grow due to nonlinear effects;

however, most of the energy remains in the fundamental mode. The

computed flow field in the presence of a Gortler vortex is in qualitative

agreement with the experimental data. The interaction of the Gortler

vortex with a two-dimensional Tollmien-Schlichting wave is also studied

and it is shown that the Tollmien-Schlichting wave grows faster than its

linear theory growth rate when the amplitude of the G6rtler vortex is suffi-

ciently large. Due to nonlinear effects this interaction further leads to the

developmenm of oblique waves with spanwise wavelength equal to the

Gbrtler vortex wavelength. The numerical method is also applied to study

the nonlinear development of a stationary crossflow vortex in a Falkner-

Skan-Cooke boundary layer. The crossflow vortex develops in a manner

similar to that found earlier for rotating disk flow. The fundamental and

the higher harmonics all tend to saturate when the integration is carried to

large amplitudes. The computed velocity distribution clearly shows the

emergence of the superharmonic which, however, does not dominate the

fundamental mode. The Falkner-Skan-Cooke flow, modulated by the

presence of the crossflow vortex, is found to be subject to a new secondary

instability with large growth rates.
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1. NTRODUCTION

The subject of laminar/turbulent boundary layer transition is of

fundamental and practical importance in fluid mechanics. Depending

upon the flow conditions and body geometry, various instability mecha-

nisms such as Tollmien-Schlichting (TS), G6rtler and crossflow may be

operative and could also interact if multiple instability modes are present.

A number of studies have been carried out to understand the breakdown of

TS waves to turbulence in a flat-plate boundary layer. Notable among these

are the experiments of Kiebanoff et al. [1], Kachanov et al. [2], Saric &

Thomas [31, the theoretical studies of Craik [4] and Herbert [5], and numer-

ical simulations of Wray & Hussaini [6], Orszag & Patera [7], Spalart &

Yang [8], Laurien & Kleiser [91, Zang & Hussaini [10] and Fasel et al. [11].

Because of these and other related studies, at least the early stages of the

breakdown process are now relatively well-understood.

The boundary layer that develops on a concavely curved surface is

subject to G6rtler instability which manifests itself in the form of steady

streamwise counter-rotating vortices. Similarly, near the leading edge of a

swept wing, crossflow instability sets in due to inflectional crossflow

velocity profiles. This instability is known to result in corotating steady

vortices known as crossflow vortices which are oriented at small angles

with the inviscid streamlines. Sometimes, this instability may also result

in unsteady crossflow vortices. Depending upon flow parameters,

Gortler/TS and crossflow/TS modes may coexist and mutually interact.

This problem has received very little attention, even though it is of direct

application in the design of modern aircrafts.
Lqp~rimertal 'wor on C .-tcr voL'rices has been performed fu,

example, by Bippes & G6rtler [12], Winoto & Crane [131 and Swearingen &
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Blackwelder [14]. The work of the latter authors was particularly carried

out to understand the details of the growth and breakdown of Gortler

vortices and eventual transition to turbulence. The results showed the

development of low speed regions, between the counter-rotating vortices,

which project outside the nominal Blasius boundary layer and create

strong inflectional normal and spanwise velocity profiles. These profiles

develop secondary instabilities resulting in unsteady oscillations prior to

transition. Twu types of secondary instability were identified. The first

results in a horse-shoe vortex structure also found by Aihara & Koyama

[15]. The second type of instability results in sinuous transverse oscillations

which were earlier reported by Bippes [16]. Both modes were also observed

in the experiment of Jeans & Johnston [17]

Crossflow instability in swept-wing flows was first discovered by

Gray [18] and later the work of Owen & Randall [19] and Gregory et al. [20]

made the phenomenon more clear and also provided a theoretical basis for

appearance of this instability in general three-dimensional boundary

layers. Experimental investigations into this instability in rotating disk

flow were performed by Smith [21], Gregory et al. [20] and Wilkinson &

Malik [22], among others. Due to three-dimensional basic flow, questions

still remain about the nature of the instability even in the linear regime.

Historically, it had been believed that this instability would only result in

steady crossflow vortices. However, the work of Malik & Poll [23] pointed

out that small unsteady disturbances may also play an important role in

the transition process in these flows. Since then, a number of studies have

been initiated to understand the nature of the swept-wing boundary layer

instability at its lincar and nonlinear btage. Notable among these are the

experiments of Mfiller & Bippes [24] and Dagenhart et al. [25]. Both the
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stationary and unsteady disturbances were observed in these experiments

which concern low-speed flows. Earlier, Saric & Yeates [26] only found

stationary crossflow vortices. However, they observed that at some distance

downstream from the leading edge a superharmonic appears in the hot-

wire signal. The amplitude of the superharmonic was found to be three

times the amplitude of the fundamental. Reed [27] attempted to explain this

phenomenon by using her wave-interaction theory. Numerical simulations

of the early nonlinear stages of the crossflow vortex have been performed by

Malik [28] and recently by Meyer & Kleiser [29].

The Gortler/TS interaction problem has been studied by Malik [30]

using numerical methods, Hall & Smith [31] using asymptotic methods and

Nayfeh & A1-Maaitah [32] using the method of multiple scales. Questions

still remain that at what amplitudes such interactions take place. An

understanding of these interactions will also shed some light on the

crossflow/TS interaction problem. The practical interest in these interac-

tion studies arises from their relevance in boundary layer transition predic-

tion which is needed for the design of modem aircrafts. The state of the art

technique used for transition prediction is based upon linear theory in the

form of the eN method. If wave-interactions of the type discussed above were

to take place, they will render the prediction of the e N method useless and

will have disastrous consequences for the design of laminar flow control

wings. It is, therefore, important to understand the nature of these wave

interactions and determine the parameter space within which they might

take place.

In the present report, we use a Fourier/Chebyshev spectral method to

inv-stigate the nonlinear development of a Gortler vortex. The computed

flow field is compared with the experiments of Swearingen & Blackwelder
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[14]. The numerical method is then used to study the interaction of a small

amplitude TS wave with a finite-amplitude G6rtler vortex. Finally,

nonlinear development of a steady crossflow vortex is considered and the

emergence of a secondary instability is discussed.

2. GOVERNING EQUATIONS AND NUMERICAL APPROACH

We consider the problem of laminar/turbulent transition in two- and

three-dimensional boundary layers. The governing Navier-Stokes

equations for an incompressible fluid are:

U +U.VU = -Vp+ VV2 U+ , (1)

VU 0 = 0, (2)

where U = (u, v, w) is the velocity vector, p the pressure, and V the

kinematic viscosity. The term F is a forcing term to be specified later. Slip-

free boundary conditions at a solid wall (y = 0) are imposed, i.e.,

(7 = (x,O,z,t) = 0. (3)

In the free stream, it is reasonable to require that

C-4U. as y -oo. (4)

Equations (1-4) are solved by a Fourier-Chebyshev spectral method.

Periodicity is assumed in the x and z directions. The dependent variables

have Fourier-Chebyshev series of the form

_, ._,u(x,y,z,t) = t t(t)e2"(k 'e2"(k_'L)T(ti) (5)

k=_K Kn=O, =_ =
2 2

where L, and L, are the periodicity lengths in x and z directions,

respectively, and Tn are the Chebyshev polynomials of degree n. The

spatial discretization employs spectral collocation. The collocation points

for the periodic directions are
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xj =jLx / K, j0,1 .... Kx-1 (6)

z. mL. / K., m =0,1.. K, - 1. (7)

A staggered grid is employed in the normal direction. Velocities are defined

at the points

T~q= CS Nq =0, ,..N
(Z'j (8)

and the pressures at

'7q,1/2 =cos(,r(q+ 1/2)/N), q=0,1 .... N-1. (9)

No artificial pressure boundary conditions are therefore needed. The

momentum equations are imposed at the points given by Eq. (8) and the

continuity at those given by Eq. (9).

The normal computational coordinate 77 is related to y through the

algebraic transformation
1+71

y a 2a

Y_ (10)

where a is a scaling constant used for proper distribution of points and y_ is

the location where free stream asymptotic boundary conditions [33] are

imposed.

In the spectral collocation method, spatial derivatives of u are

obtained by differentiating the series expansion coefficients 0(t) determined

by discrete Fourier and Chebyshev transform of the grid-point values of u.

The temporal discretization involves Crank-Nicolson on the pressure

gradient and vertical diffusion terms. The remaining terms in the momen-

tum equations are handled explicitly by using second-order Adams-

Bashforth method. The incompressibility constraint is imposed implicitly.

The resulting implicit equations are solved iteratively by a minimum

residual method. The details of the procedure are given by Malik et al. [33].
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2.1 Flow over a curved wall

The numerical procedure outlined above is applicable to the study of

transition problem in two- and three-dimensional boundary layers where

TS, Gortler or crossflow instability mechanisms may be operative. In order

to explain the numerical approach, we describe the application of the

method to the flow over a concavely curved plate where both Gortler and TS

waves might exist. Extension to three-dimensional boundary layers will be

considered in a later section.

Consider incompressible flow with free stream velocity U_ along a

mildly curved wall with constant curvature K = t / r where t is a character-

istic length scale and r is the radius of curvature of the wall. If x is the

distaice along the curved wall, z along the span, and y normal to the wall,

then the governing equations represented in body-oriented coordinates are
du du du du -'u

-)U ++V-+W-+ Vu- yu + 2y ,dx dy dz d' L(11)

--1 V+. d+ w----u 2 = _.p+ VdUy'v-2y u
dt & 7 d- (12)

.div' dw +Udiv +Wdtv dp +V'O
-+ u-+V-+w-=--+ vV 2w,

ai dx dy 0 d~z (13)

du dv d0

(14)
where

V2 =2d 2  d 2  d 2  d02 0

1 ,:

1+ Ry 1+KY'
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In Eqs. (11-14), if all velocities are assumed to be scaled by U_, lengths

by i, time by I/U_, pressure by pU_, then V = 1/R, where R is the Reynolds

number. A Cbrtler number can be defined as G = R~Fi.

According to first-order boundary layer theory, the above equations

reduce to the Blasius flow which provides the basic flow for our study of

nonlinear development of G6rtler vortices and Gortler/TS interaction in a

two-dimensional boundary layer.

2.2 Linear Stability Theory

We consider an infinitesimally small disturbance superposed on the

Blasius flow. For instance, the streamwise velocity u(x,y,z,t) may be

written as

u(x,y,z,t) = UB(y) + 6(y)e'( =+#Z- O)  (15)

under the quasi-parallel flow assumption. Here E is a small parameter, a

and ,B are disturbance wave numbers in x,z directions respectively and

o) = (o, + io), is the complex frequency. The real part or is the actual distur-

bance frequency and the imaginary part co, is the temporal growth rate.

The disturbance amplitude increases if co, > 0, otherwise the disturbance

dies out.

Linear stability equations may be derived by substituting u(x,yz,t)

from Equation (15) and similar expressions for other dependent variables

into the Navier-Stokes equations (11-14) and then retaining only terms of

O(E). The resulting sixth-order system of ordinary differential equations

describes an eigenvalue problem for parameters a, P3 and w which is solved

by the fourth-order accurate compact difference scheme of Malik et al. [34].

Depending upon the values of Gortler number G and wave numbers (a,/),

the governing equations yield solution for both the Gortler vortices and TS
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waves. These solutions are needed to provide initial conditions for the non-

linear calculations. In figures (1-2), we provide linear results for Gbrtler

and TS waves to emphasize differences between the two instabilities.

Description for figures (1-2) is provided below.

2.3 Nonlinear Simulations

Various nonlinear problems may now be formulated. Suppose, we

are interested to studv the nonlinear dc-elopment of Gortler ;'crtices. A

steady G6rtler vortex is characterized by or = a = 0, G > 0, / > 0. We solve

linear stability problem for Blasius boundary layer and find P =Pc,, the

growth rate oi and the disturbance eigenfunctions UGVG, ii. These are

presented in Figure 1. The plots show that the streamwise component UG is

an order of magnitude larger than the cross-stream components 6G,, and

iia.. The spanwise component is 900 out of phase with ti4 and . This

allows steady G6rtler vortex problem to be represented as a system of real

equations. In the present case, our complex system of equations automati-

cally yields the real solution for the steady G6rtler vortex. The structure of

L6G and &( is such that it results in a pair of counter-rotating vortices. Here

we only consider steady G6rtler vortices since in the experiments these

vortices are commonly found to be steady. The G6rtler vortex is assigned an

initial finite-amplitude cG. Then an initial velocity, say for x component of

velocity, is of the form

u(x,y,z,O) = U (y)-i ccReal[c,(y)e' O] (16)

Equations (11-14) are solved with these initial conditions and solution

is marched in time. The solution yields the development of the

fundamental and various harmonics depending upon the number of modes
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allowed in the simulation according to Eq. (5). The temporal development is

related to the spatial development through group velocity transformation

(Cg = dw / da) as for TS waves.

The eigenfunctions for a TS wave are presented in Figure 2. Th'

eigenfunctions are now complex with disturbance peak lying closer to the

solid boundary. The interactio, of a Gortler vortex with two oblique TS

waves may be siudied by choosing the following initial conditions:

u(x,y,z,O = U,(y) + coReal l[G (y)e"oz] + CTS {RealQi(y)ei( +x+I' )]

+Rea~l~(~ei~~hx~) 31(17)
Here various values of fiTs in relation to PG may be assigned. For

examp - e, Pir, = P
3
G,2 describes a subharmonic resonance and f3 rs = fis

describe: a fundamental resonance. Relative magnitudes of e, and FT,

describes various regimes of interaction where either Gortler vortex or TS

wave is small or when both have large amplitude and interact nonlinearly.

How the numerical simulation may be used to study the intermodal

interaction may be best described by providing the example of subharmonic

instability in a flat plate boundary layer. This instability which is the result

of parametric resonance between a two-dimensional TS wave and oblique

TS waves with streamwise wavelength twice that of the fundamental was

first theoretically studied by Herbert [5] using Floquet analysis. Here we

consider fhe fundamental wave to have a = .2033 and prescribe R = 606. Ar

amplitude cf .01 (i.e., 1%) is assigned to the two-dimensional TS wave.

According to Herbert. a strong subharmonic instability of wave

numbers ((a/2), P3) should develop for a wide range of P3, (see ';,. 9 in [5]).

The present calculation is performed by including in the initial conditions
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two oblique modes (a/2, fl = + .16968). Results of the calculation are

presented in Fig. 3. In this figure, the natural logarithm of the energy

history of the modes (a,0) and (a/2, fl) are plotted as a function of time.

Calculations are carried out to about 3.5 linear time periods of the finite-

amplitude two-dimensional wave. The solid curves are the linear theory

results for the corresponding modes. The finite-amplitude two-dimen-

sional wave follows its linear growth (o1 = .7E-5) curve within the computa-

tional domain. The subharmonic (a/2, /3) follows the linear theory result for

primary subharmonic for some time and then diverges from it indicating

strong secondary instability. The growth rate at the onset of this instability

is (), = .0098 which drops to o, = .0071 towards the end of the computation

due to nonlinear effects. This is in good agreement with the prediction of

Herbert for to, = .00824. The subharmonic secondary instability has been

linked to the squire mode by Herbert. However, in order to capture the

instability using numerical simulations, we need not provide the actual

eigenfunctions for the squire mode in the initial conditions. In our calcula-

tions we have used the eigenfunctions for the primary subharmonic. In

another calculation the initial conditions for the (a/2,±fP) modes were

arbitrarily taken to be
i Xi

11 = 0, i3=y6e - - l , and ib = ±_-
y °Y(18)

The results are presented in Figure 4. Again the subharmonic secondary

instability emerges. Most interestingly, both calculations converge towards

the same growth rate for the subharmonic. Higher harmonics also grow in

these nonlinear calculations. In a transition simulation, one would like to

assign a small random distribution of energy to all the modes, except, of

11



course, te finite-amplitude disturbance and let the dominant pattern

evolve by itself.

In our calculations we allow the mean flow to develop in time in

order to simulate the development of Blasius profile along the curved plate.

This is achieved by specifying the forcing term Fin Eq. (1) as

d2UB dUB
! 2(19)

where
dUR = C9 dUB
dt dx

with Cg being the disturbance group velocity defined above.

3. NONLINEAR DEVELOPMENT OF GORTLER VORTICES

Before embarking upon a study of Gortler/Tollmien-Schlichting wave

interaction, it is important to study the nonlinear development of Gortler

vortices to demonstrate that our numerical model adequately describes the

phenomenon of interest. This we attempt to achieve by performing calcula-

tions for the conditions of the experiment of Swearingen and Blackwelder

[14]. The experiment of Swearingen and Blackwelder was performed in a

low speed wind tunnel specially designed to have a concave wall in order to

study Gortler instability. The radius of curvature of the wall was r = 3.2 m.

Our calculations start at x = 45 cm which, for a free stream speed of 5 m/s,

gives an R= Rie = 395 and a G6rtler number G = 7.5. The initial

amptitude for the Gortler vortex is taken to be 5%. The effective Gortler

number increases as the flow is allowed to develop according to Eq. (19).

The convection velocity C, is taken to be the disturbance group velocity

which is also used to transform our temporal results to spatial results for

comparison with the experimental findings.
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The v-w velocity vector plots are presented in Figure 5 at computa-

tional times of 181 and 880, the latter time being quite far into the nonlinear

regime. The two plots are similar and indicate the counter-rotating struc-

ture of the Gortler vortex except that the disturbance intensity increases

and the vortices reach out further away from the wall at larger time. Two

regions in these figures may be noted: one where the velocity vectors are

pointed upwards away from the wall and the other where they are pointed

downwards to the wall. The former will result in a low streamwise velocity

region while the latter will result in a high velocity region as discussed

below. These regions may be identified as "peak" and "valley" following the

nomenclature of Klebanoff et al. [1] for flat plate boundary layer transition.

The distribution of the disturbance u velocity at various times

(distances) is plotted in Figure 6. The solid lines represent positive velocity

and the dotted lines negative velocity. Initially the two regions of positive

and negative disturbance velocity look similar. As the G6rtler vortex

develops, the region of positive disturbance velocity gets flattened and

squashed near the wall while the region of negative velocity gets elongated

in a direction normal to the wall and as a result will influence the flow

further away from the wall as we note in the next fig-ire.

Figure 7 contains a comparison of the constant u (total) velocity

contours at various streamwise distances, The computed results are

presented in Figure 7(a) which show the development of mushroom like

structure. The "mushrooms" are caused by the ejection of the low velocity

fluid, away from the surface, in the "peak" region noted above. Two peaks

then contain a "valley" in between as evident from the figure. This valley is

caused by the movement of high velocity fluid towards the wall. The exper-

imental results for the constant u velocity contours are given in Figure 7(b)
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and also show the development of mushroom like structure. These mush-

rooms, which are essentially the nonlinear manifestation of the G6rtler

vortex, extend out of the mean Blasius boundary layer both in the experi-

ment and the present computations.

The wall-shear stress along the peaks and valleys develop differently

as shown in Figure 8 where comparison is made again with the experi-

ment of Swearingen and Blackwelder. In the nonlinear regime, the wall

shear stress continues to decrease in the "peak" region due to inflected

velocity profiles while it increases along the valley due to the presence of

high velocity fluid near the wall. The computed results would be valid only

up to about x = 90 cm, since three dimensional effects and unsteadiness

caused due to secondary instability must begin to appear which are not

accounted for in the present computation. These computations do show

that the early nonlinear stage is properly captured. A full 3-D calculation

will be able to capture the secondary instability stage and beyond. The 3-D

version of the code has been used in the Gortler/TS wave-interaction simu-

lation and will be discussed below.

Due to the inflected velocity profiles in the "peak" region, the bound-

ary layer considerably thickens while it thins in the "valley" region due to

fuller profiles. This is depicted in Figure 9 where the computed boundary

layer displacement thickness is compared with the experiment. Again, a

good agreement with the experiment is found up to about x = 90 cm.

The distribution of the computed rms amplitude of velocity distribu-

tion due to Gortler vortex is compared with the experiment in Figure 10(a).

Both the experiment and the computations show that the Gortler vortex

reaches a saturated state. At this stage strong secondary instabilities

would develop which can be studied by using our numerical model. We
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expect to observe at least two types of breakdown: one involving a wavy

vortex structure prior to transition while the other involving a horse-shoe

type structure. The conditions for the appearance of these two structures

may be established by performing numerical computations. Figure 10(b)

gives the disturbance energy content in various modes. The calculation

shows that, even though the higher harmonics grow rapidly, most of the

energy remains in the fundamental mode. The emergence of the

superharmonic ((0,2) mode) is in agreement with the experimental

observation of Aihara & Koyama [15].

4. GORTLERrOLLMIEN-SCHLICHTING WAVE INTERACTIONS

The problem of excitation of a Tollmien-Schlichting wave in the

presence of a G6rtler vortex is studied now. We take the initial amplitude of

the G6rtler vortex to be 10 percent. The non-dimensional spanwise wave

number is 0.4 and the Gortler number is taken as 12. Here, we use our

numerical model to investigate possible excitation of a two-dimensional

(a,0) TS wave in the flow field modulated by the presence of G6rtler vortices.

The TS wave is an upper branch mode and has R = 600, a = .2 and the linear

theory eigenvalue is (.0738, .0002). The results are presented in Figure 11

where (0,1) mode indicates the Grtler vortex and (1,0) mode the TS wave.

The presence of G6rtler vortex causes the growth rate of the two-dimen-

sional TS wave to increase above its linear theory value. Towards the end of

the computational domain, the growth rate of the TS wave is higher than

the linear growth rate of the primary (G6rtler) instability.

The eigenfunctions of the Gbrtler (0,1) mode are presented in Figure

12(a) for various simulation times. One characteristic that is immediately

evident is that the shape of the eigenfunction remains essentially the same
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for quite high amplitudes. This was confirmed by restarting the calcula-

tions for low initial amplitudes. This implies that the shape function

assumption would be applicable in a secondary instability analysis for the

Gortler vortex problem. At later times, however, the shape beings to

change and a plateau appears in the eigenfunction distribution near the

edge of the boundary layer.

The eigenfunction for the TS (1,0) mode are given in Figure 12(b).

Initially, only the inner peak increases in amplitude while it moves slightly

outwards from the wall. However, at later times the inner peak moves

towards the wall while increasing in amplitude. After some time, the outer

peak also increases in amplitude and becomes fairly broad. The appear-

ance of this our structure is perhaps related to the broadening of Gortler

vortex structure noted in Figure 12(a). Due to the presence of the Gortler

vortex the mean flow is modulated and develops "wake-like" profiles which

would then be subject to instabilities found in laminar wakes.

Some additional calculations were performed for a Gortler number of

14, f= 0.5 and the initial G6rtler vortex amplitude of 10 percent. The TS

wave is again a = .2; however, this wave decays linearly for R = 950 which is

used for the results presented in Figure 13. Again the (1,0) mode grows in

the presence of the G6rtler vortex. Also shown in the figure are the

computed growth history of the oblique (1,1) mode. Some numerical tests

indicated that this mode does not get excited in the absence of (1,0) mode.

However, this mode now grows due to nonlinear interaction of (0,1) and

(1,0) modes.

Some calculations were also performed at the TS wave number a

which corresponded to the lower branch mode. Though more tests need to

be performed, it appears that the upper branch TS modes are excited while
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the lower branch modes are relatively insensitive to the presence of the

Gortler vortex. Although the TS waves are excited in the presence of the

Gortler vortex the amplitude of the Gortler vortex required for the interac-

tion is quite high and is at least of the order of 10 percent. Therefore, the

Gortler-vortices will dominate the transition process and the role of the TS

waves will be only in the secondary instability stage. However, here we

have only considered the case where Gortler vortices are finite-amplitude

but TS waves are small. The amplitude required for TS waves to breakdown

is much lower than noted above for Gortler vortices. Thus the situation will

be quite different when TS waves are of finite amplitude or when both are of

finite amplitude. These regimes of interaction may turn out to be much

more dangerous. It may also be noted that the presence of G6rtler vortices

may provide the spanwise scales for internalization of free stream

disturbances thus enhancing the receptivity process.

5. NONLINEAR DEVELOPMENT OF A CROSSFLOW VORTEX

The above methodology used for nonlinear simulation of Grtler

vortex problem equally applies to flows with three-dimensional basic states,

such as swept-wing flows and flow due to a rotating disk. The appropriate

basic flow and initial conditions, however, need to be specified. The objec-

tive here is to carry out such a calculation for a swept-wing configuration

and see if there are any differences between the nonlinear development of a

crossflow vortex in rotating disk and swept wing flow. The former is

generally used as a prototype for studying the instabilities in the swept wing

flows. The secondary instability analysis of Reed [27] for a swept wing

suggests that there is a resonance set up between the crossflow vortex and

its superharmonic while the computational results of Malik [28] for a rotat-
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ing disk do not suggest any such resonance. It is therefore important to

investigate any differences that might exist between the two flows.

5.1 Rotating Disk Boundary Layer

We first review the results which have been obtained for rotating disk

flow. Just like the swept-wing flow, this boundary layer is amendable to

inflectional instability which manifests itself in the form of stationary co-

rotating vortices known as crossflow vortices since they are caused by the

instability of the crossflow velocity profiles. An exact steady solution to the

Navier-Stokes equations exists for rotating disk flow and this is one of the

reasons why this flow has quite often been used as a prototype for studying

instability mechanism in the swept wing flow. The mean flow for the

rotating disk is governed by the ordinary differential (von Karman [35])

equations:

F2 - (G + 1)2 + F'H - F" = 0, (20)

2F(G + 1) + G'H - G" = 0, (21)

T"+ HH'- H" = 0, (22)

2F + H'= 0, (23)

where F, G, H and 17 are related to the velocity components and pressure

according to

V, = rf F(y), V, = rOG(y),
(24)

VY = 1-vf2H(y), P = pfvTI(y).

where 0 is the angular speed of the disk. The above equations are solved

subject to the boundary conditions

F=O, G=O, H=O, y=O (25)
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F=O, G=-1, y-* (26)

A nonlinear calculation was initiated by imposing a disturbance

upon the three-dimensional basic state computed above. The disturbance

shape was taken to be that given by the linear eigenfunction which was

assigned an amplitude of 10 percent with respect to the mean flow. The

wave numbers in the radial and azimuthal directions are a = .3751 and

L = .0777 which may be labelled as (1,1) mode. The results for the energies

of (1,1), (2,2), (3,3), (4,4) and (5,5) modes are presented in Figure 14. The

solid curve represents the linear theory result for the (1,1) mode. Spectral

broadening takes place and the super-harmonics gain energy as the growth

of the fundamental slows down. The energy cascading takes place through

(2,2), (3,3), (4,4), etc. modes. All the modes tend to saturate and the

harmonics do not overtake the fundamental mode.

The azimuthal velocity profiles at fixed radius but at various

azimuthal locations within the computational domain are presented in

Figure 15. The nondimensional time of the simulation is 170. While the

von Karman profile is full with no inflection point, the computed flow

develops "wake-like" profiles at y around 2.5. These profiles are amenable

to secondary instabilities. However, no attempt was made here to capture

these instabilities.

Hot-wire traces at various radii from the experiment of Wilkinson

and Malik [22] are presented in Figure 16(a). The hot-wire is located at

y = 1.8 and is oriented such that it essentially senses the perturbations in

the azimuthal velocity component. The traces develop a "kink" which may

be attributed to the superharmonic. The computational traces at various

radii are presented in Figure 16(b). The nondimensional time of the simu-
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lation is again 170. The computational trace appears to develop the same

type of "kink" as in the experiment. The amplitude of this "kink", appar-

ently caused by the superharmonic, is small compared to the fundamental

both in the computation and the experiment. The superharmonic appears

due to the self-interaction of the crossflow vortex.

5.2 Falkner-Skan-Cooke Boundary Layer

Basic insight into instability of flow past a swept wing may be

achieved by considering Falkner-Skan-Cooke (FSC) flow. To this end, let us

consider boundary layer flow over an infinite swept wedge at zero

incidence. The governing equations may be written as (see Rosenhead [36])

f'"+ f"+(1- f")= 0(27)

g" + fg' = 0 (28)

where u / u, = f'(r7), w / w, = g(i7) (u, and w, being the boundary layer edge

velocities in the chordwise x and spanwise z directions (see Figure 17)

respectively), and fl is the Hartree pressure gradient parameter. The

similarity parameter 17 is defined as

=7 2 f vx
y

(29)

The above equations are to be solved subject to the boundary

conditions:

f=f'=g=0 ; 77=0 (30)

f'--->1, g-l ; 77 (31)

With reference to Figure 17, the streamwise and crossflow velocity

profiles can be constructed for FSC flow as

U(y) = f'(y)cos2 0 + g(y) sin2 0 (32)
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W(y) = [-f'(y)+g(y)]sin cosi9 (33)

where both the streamwise and crossflow velocities, U and W in x8 and z8

directions respectively, have been scaled with V = and the external

streamline angle 6 is given as

0= tan-'(w.u,) (34)

The functions U and W for /3 = 0.6 are ploltted in Figure 18 where y is

the nondimensional distance normal to the surface and has been scaled

with I = V - / ue.

In Figure 17, x, is along the axis of the crossflow vortex which is

oriented at some small angle 4 with the free stream direction. The vortex

coordinate system (x,, y, z,) is used for the nonlinear simulation of the

crossflow vortex. The analysis begins by imposing a disturbance of the

form

[i(x ,y,z ,t) = ye(35)

on the FSC flow. The wave front is then aligned with x, direction. Here we

consider a stationary disturbance so that Real (c) = 0 and Im(w)

corresponds to the temporal growth rate of the vortex. The calculations are

performed for the following conditions:

R = Vet / v = 800
and

0,,=0.48, 0=-4.1350.

The above combination of parameters results in a stationary vortex

((or = 0) disturbance according to linear theory. The linear theory growth

rate is .0065. The crossflow Reynolds number is 244.

Linear eigenfunctions were first obtained to provide initial conditions

for the nonlinear simulations. The eigenfunctions 6,6,ti are plotted in
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Figure 19. These can be compared with the results presented in Figure 1

for Gdrtler vortex which is also a stationary streamwise vortex. We note

that the eigenfunctions are complex for the crossflow vortex; however, just

like the Gortler vortex the magnitudes of 6,zv components are much

smaller than the Ci component along the axis of the stationary crossflow

vortex.

These eigenfunctions were included in the initial conditions for the

numerical study of the nonlinear evolution of the crossflow vortex. The ini-

tial amplitude was taken to be 5 percent. The (v,w) vector plots are pre-

sented in Figure 20. As opposed to the vector plots given in Figure 5 for the

Gortler vortex, it can be seen that crossflow vortices are corotating vortices

with one vortex per wave length. The disturbance intensity increases as the

vortices develop nonlinearly (compare Figures 20(a) and (c)).

The evolution of the energies of various modes is given in Figure 21.

Just like in the case of a Gortler vortex, higher harmonics grow and they

all tend to saturate. The energy in the fundamental (0,1) mode dominates.

This is quite similar to what was observed above for a crossflow vortex in

rotating disk flow.

Saric & Yeates [26] observed that, in addition to the fundamental

wavelength, an additional peak in the hot-wire trace appears at some

height from the wall with half the wavelength. This latter peak had an

amplitude about 3 times that of the fundamental. The surface flow visual-

izations only showed streaks at the wavelength given by the fundamental.

Reed [27] attempted to explain the anomaly found in the experiment by

using secondary instability theory based upon Floquet analysis. Thus the

periodic basic flow was constructed by superposing on the three-dimen-

sional boundary layer the eigenfunctions for the crossflow vortex of
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wavenumber P,. The amplitude assigned to this disturbance was 7 percent

in order to simulate the experimental conditions. Linear instability analy-

sis of this basic flow revealed that a disturbance of wavenumber 2P,, is

amplified while this disturbance is stable from a linear analysis of the

boundary layer flow alone. However, the growth rate for the superhar-

monic 2,8, was found to be almost the same as for the fundamental P', mode

and, thus, one of the basic assumptions of the secondary instability theory

was violated. In any case, the eigenfunctions obtained from the secondary

instability analysis were assigned an amplitude of 21 percent (3 times the

fundamental) and the streamlines for the resulting flow were constructed

which showed two vortices per wavelength of the fundamental instability.

The results appeared to explain the observations of Saric and Yeates [26].

However, we note that in our nonlinear calculations presented in Figure 21,

the superharmonic does not achieve amplitude higher than that of the

fundamental, let alone three times the amplitude of the fundamental.

It may well be that the superharmonic has an eigenfunction struc-

ture which has local peak somewhere in the boundary layer at an ampli-

tude of about 3 times that of the fundamental as observed in the experiment

of Saric and Yeates. Therefore, we plot the eigenfunctions for the funda-

mental and the superharmonic at four different times in Figure 22. The i

amplitude of the fundamental and the superharmonic increases with time

but no where in the boundary layer the latter attains amplitude higher than

that of the former.

The fundamental 6 perturbation eigenfunction develops a "kink"

which at later times develops into a double peak. Somewhat similar struc-

ture appears in the swept wing experiments of Dagenhart et al. [251 but is

unsteady. At this time, we have not attempted to find the frequency content
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of the computed signal. Such a comparison will be meaningful when the

calculations are performed for the exact conditions of the experiment of

Dagenhart et al. We also note that initially the shape of the fundamental

Aigenfunction is preserved even though the amplitude is relatively large.

This lends some support to the shape function assumption generally ased

in the secondary instability analysis.

The computational traces of u at ',arious heights in the boundary

layer and at three different times are presented in Fig. 23. The u(z,) velocity

develops a "kink" similar to that found for the rotating disk case due to the

development of the superharmonic. This kink is quite pronounced at a

certain height from the surface. A hot-wire traversed in the spanwise

direction at this particular height will indicate the presence of a distur-

bance with half the wavelength of the fundamental; however, as noted

above the amplitude of the superharmonic is less than the fundamental.

The observation of Saric & Yeates that the Auperharmonic attains three

time the amplitude of the fundamental may be the result of certain condi-

tions unique to the experiment, particularly when the experiments of

MUller & Bippes [24] and Dagenhart et al. [25] fail to observe the

phenomenon noted by Saric & Yeates. It mpy be that the nonparallel/

nonlinear calculations for the exact conditions of the Saric-Yeates experi-

ment will explain the obser'ed results. Nonparallel tffcts are accounted

for neither in the secondary instability analysis of Reed [27] nor in the

present temporal numerical simulations. In any case, we conclude that

the anomaly found in the Saric-Yeates experiment, namely that the super-

harmonic attains an amplitude three times that of fundamental, remains

unexplained.
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The velocity profiles parallel and at 900 to the crossflow ,ortex axis at

various spanwise locations are presented in Figure 24. Again, inflected

"wake-like" profiles develop in the direction of the vortex axis (which is at

an angle of -4.135' with respect to the inviscid streamline) due, to nonlinear

distortion of the crossflow vortex as also found for the rotating disk. These

profiles will be subject to inviscid secondary instability. From the results

presented in this section, it becomes quite clear that the nonlinear develop-

ment of a crossflow vortex in FSC boundary layer is quite similar to what

was found for a rotating disk.

5.3 Secondary Instability in FSC Boundary Layer

The computed Falkner-Skan-Cooke flow field in the presence of a

crossflow vortex has been presented above. It is of interest to investigate the

type of secondary instabilities this flow may be subjected to. The present

numerical simulations have been used to investigate one such instability.

The calculations have been performed for the parameter values used above

in the nonlinear simulation of the crossflow vortex. However, included in

the initial conditions is a mode with a, = 0.48 and fP,, = 0.48. This unsteady

mode is highly damped according to the linear theory. The growth rate of

this mode computed from our numerical simulations is plotted in Figure

25. Initially, the mode is damped, in agreement with the linear stability

theory. However, after about t = 100, this mode begins to grow. The growth

rate distribution is oscillatory because of the interactions with other modes,

but eventually the growth rate of this mode is much larger than the linear

growth rate of the crossflow vortex ((0,1) mode) indicated by circles in the

figure. The computed growth rate of the (0,1) mode indicated by a dashed

line is also shown and it approaches zero as the crossflow mode saturates.
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The (a P,) mode (denoted as (1,1) mode) thus develops quite quickly and will

perhaps provide at least one mechanism for breakdown of the crossflow

vortex. The values of a, and P3, chosen here imply a wave oriented at an

angle of about 450 with respect to the crossflow vortex.

For rotating disk flow, Kohama [37] observed that prior to transition a

new instability, in the form of small vortices, appears on the surface of

crossflow vortices. These vortices were oriented at an angle of about 45'

with respect to the crossflow vortex. The structure observed by Kohama is,

perhaps, the result of a localized instability which takes place at some

distance away from the wall and produces an illusion of the "vortices"

riding on the crossflow vortex. Obviously, the flow visualization technique

used can not provide the true nature of the instability. In any case, it

appears that the secondary instability computed here may provide a clue for

the explanation of the experiment of Kohama. It, therefore, would be desir-

able to further investigate this phenomenon using Floquet analysis and

more numerical simulations. It may be noted here that since the growth

rate of the (a,,f3A) mode is about 4-5 times the linear growth rate of the cross-

flow vortex ((O,fP,) mode), Floquet analysis can provide useful results.

Further investigations into the nature of this secondary instability will be

made at a later date.

6. CONCLUSIONS

We have used direct numerical simulations to investigate nonlinear

development of Gortler and crossflow vortices and to study Gortler/TS wave

interactions. Our results show that when Grtler vortex develops nonlin-

early, higher harmonics grow but most of the energy remains in the

fundamental mode. The flow field in the presence of the nonlinear Grtler
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vortex has been computed for the conditions of the experiment of

Swearingen & Blackwelder [14]. In agreement with the experiment, a

"mushroom" like structure appears as the low velocity fluid is ejected up-

wards between the counter-rotating Gbrtler vortices. In this "peak" region,

wall shear stress decreases while the displacement thickness increases

relative to the mean Blasius boundary layer. The converse is true for the

"valley" region where the high velocity fluid is pushed towards the wall.

Numerical simulations are also used to study the excitation of a two-

dimensional TS wave in the presence of a finite-amplitude Gortler vortex.

The results indicate that the TS wave grows faster than its linear growth

rate and that oblique TS waves also grow due to nonlinear interactions.

These oblique waves are linearly stable. The amplitude of the Gortler vortex

at which the interaction takes place are much larger than that needed in

flows where finite-amplitude TS waves constitute the primary instability.

Finally, we have used the computational approach to simulate the

nonlinear development of a crossflow vortex in a Falkner-Skan-Cooke

boundary layer. It is shown that nonlinear development of a crossflow

vortex in FSC and rotating disk boundary layer are similar. In both flows,

the fundamental saturates at sufficiently large amplitudes along with the

harmonics. The first superharmonic clearly emerges in the velocity signal

but its amplitude remains smaller than the fundamental. A new type of

secondary instability is noted in the numerical simulations. This instabil-

ity is found to have growth rates which are 4 to 5 times higher than the

growth rate of the linear crossflow vortex.
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Figure 1. Eigenfunctions for a Gortler vortex in a Blasius boundary layer,
G = 14, p3=.3.
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Figure 2. Elgenfunctions for an oblique TS wave in a Blasius boundary
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Figure 3. Computed evolution of energies of a two-dimensional TS wave
((a,0) mode) and the oblique subharmonic ((cd2,fp mode). In this
calculation, R = 606, a = .2033, f = .16968. A strong secondary
subharmonic instability develops. Included in the initial
conditions are two oblique primary subharmonics. The solid
lines represent linear theory results.
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Figure 4. Same as for Figure 3 except the initial conditions for the
subharmonic were those given in Eq. (18).
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Figure 8(a). A comparison of the computed and experimentally observed
(Ref. [141) development of wall shear DUIDY for Gortler vortex
flow.

40



peak (com.)

--------- valley (corn.)

i.0 0 peak (exp.)

o valley (exp.)

0.9

0.8

0.7 0

0 00
0.6

0.5

0
0.4 0

0.3 0 0

ci
0

0.2 0 _]

0.10 1 U -"[ ---

0 I I I I i I
0 20.0 40.0 60.0 80.0 100.0 120.0 140.0

X(cm)

Figure 9(a). A comparison of the computed and experimentally observed
(Ref. [19]) displacement thickness vs. streamwise distance.
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Figure 10(a). The computed and measured (Ref. [14]) rms amplitude CI
velocity distribution due to the Gortler vortex.
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Figure 10(b). Evolution of disturbance energies of various Gortler modes in
a boundary layer. The fundamental (0,1) mode continues to
have the dominant energy.
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Figure 11. Evolution of energies of various modes using direct numerical
simulation and comparison with linear theory results. Due to
the presence of Gortler vortex ((0,1)mode), the TS wave ((1,0)
mode) grows faster than its linear theory growth rate.
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Figure 12(a). Eigenfunctions for the Gortler (0,1) mode at various times.
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Figure 12(b). Eigenfunctions for the TS (1,0) mode at various times.

46



0

AAAAAA&&

'

-A A A A02

A
A

A
A

A

A
A

A

-15 (10)

in E

-20

-25

-30
0 100 200 300 '400 500

TIME

Figure 13. The evolution of the energies of various modes in the presence of
a finite-amplitude G6rtler vortex ((0,1) mode). The TS wave ((1,0)
mode) gets excited.
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Figure 14. Computed evolution of energies of various modes in the presence
of a finite-amplitude crossflow vortex ((1,1) mode) in rotating
disk flow. In this calculation R = 500, a = .3751,f3 = .0777. Initial
amplitude of the (1,1) mode is 10% of the mean flow.
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Figure 15. Computed azimuthal velocity profiles in rotating disk flow at a
fixed radial location and within 1/2 fundamental wavelength.
Time t = 170.
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Figure 16(a) Hot-wire traces at various radii near transition in rotating
disk boundary layer. Hot-wire is located at y = 1.8 and it is
oriented such that it senses the perturbation in azimuthal
velocity component.
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Figure 16(b) Computed traces of azimuthal velocity perturbations at
y = 1.8. Only one fundamental wa,-elength is shown. The
calculations are for the conditions of Fig. 14. Time t = 170.

51



z

Ue
e

w
e

z

V

x xS

Figure 17. Coordinate system for Falkner-Skan-Cooke boundary layer.
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Figure 18. Streamwise and crossflow velocity distribution in Falkner-Skan-

Cooke boundary layer,
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(a) velocity component along the axis of the vortex

Figure 19. Disturbance eigenfunctions for a crossflow vortex in FSC
boundary layer.
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Figure 19. Continued.
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Figure 20. Velocity vector plots in y-z, plane for a crossflow vortex in FSC
boundary layer.
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Figure 20. Continued.
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Figure 21. Evolution of energies of various modes in the FSC boundary
layer at R = 800. The initial amplitude of the fundamental
stationary crossflow vortex ((0,1) mode) is 5 percent.

i6



0.08

0.07(0)
o-- - (0.2)

0.06

0.05

* 0.04

0.03

0.02

0.01

0 _ -/ Nt. ,
0

0 5.0 10.0 15.0

y

(a) Time =34

Figure 22. Disturbance u profiles for the fundamental and superharmonic
at various times in the presence of a finite amplitude crossflow
vortex.
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Figure 22. Continued.
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Figure 22. Continued.
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(d) Time = 327

Figure 22. Concluded.

64



O0 . . . . . . . . . 601

L 317

0.7 23
N N

u (z, 0.8

05

0.4

0.3

11 10 20 30

(a) Time = 16
I 00

090

0.0
/ N N

1.2 050 /

0/ N/

030 y

.45a
020 

.8

1.317
0.10

2.3

0 I
0 100 20.0 30.0

2.

(b) Time = 195

:0

N //

07 I I /

04 -
04 I \

03 -I

.458

02 -0

- 317

01 308

0 0O 20 30

2.

(c) Time = 355

Figure 23. Computational trace of the velocity component along the axis of
the crossflow vortex at three different times and at various
heights from the surface for FSC boundary layer. Two wave
period are shown.

65



10.00

L=WAVE LENGTH

z=0

- ----------- Z=L/4

_______ -- Z-L/2

-- Z=3xL/4

>- 5.00

0
0 0.2 0.4 0.6 0.8 1.0

U

(a) velocity component in the direction of the vortex axis

Figure 24. Velocity components at Time = 355 and various spanwise
location.
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Figure 24. Concluded.
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Figure 25. Growth rates of various modes in the presence of a finite
amplitude crossflow vortex in FSC boundary layer.
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